Higher Rank Graph Algebras
نویسنده
چکیده
These are lecture notes of a course given by Alex Kumjian at the RMMC Summer School at the University of Wyoming, Laramie, June 1-5, 2015. Warning: little proofreading has been done.
منابع مشابه
The H Algebras of Higher Rank Graphs
We begin the study of a new class of operator algebras that arise from higher rank graphs. Every higher rank graph generates a Fock space Hilbert space and creation operators which are partial isometries acting on the space. We call the weak operator topology closed algebra generated by these operators a higher rank semigroupoid algebra. A number of examples are discussed in detail, including t...
متن کاملNILPOTENT GRAPHS OF MATRIX ALGEBRAS
Let $R$ be a ring with unity. The undirected nilpotent graph of $R$, denoted by $Gamma_N(R)$, is a graph with vertex set ~$Z_N(R)^* = {0neq x in R | xy in N(R) for some y in R^*}$, and two distinct vertices $x$ and $y$ are adjacent if and only if $xy in N(R)$, or equivalently, $yx in N(R)$, where $N(R)$ denoted the nilpotent elements of $R$. Recently, it has been proved that if $R$ is a left A...
متن کاملClassifying higher rank analytic Toeplitz algebras
To a higher rank directed graph (Λ, d), in the sense of Kumjian and Pask, 2000, one can associate natural noncommutative analytic Toeplitz algebras, both weakly closed and norm closed. We introduce methods for the classification of these algebras in the case of single vertex graphs.
متن کاملSemigroupoid C*-algebras
A semigroupoid is a set equipped with a partially defined associative operation. Given a semigroupoid Λ we construct a C*-algebra O(Λ) from it. We then present two main examples of semigroupoids, namely the Markov semigroupoid associated to an infinite 0–1 matrix, and the semigroupoid associated to a higher-rank graph. In both cases the semigroupoid C*-algebra is shown to be isomorphic to the a...
متن کاملMultiply generated dynamical systems and the duality of higher rank graph algebras
We define a semidirect product groupoid of a system of partially defined local homeomorphisms T = (T1, . . . , Tr). We prove that this construction gives rise to amenable groupoids. The associated algebra is a Cuntz-like algebra. We use this construction for higher rank graph algebras in order to give a topological interpretation for the duality in E-theory between C∗(Λ) and C∗(Λop). Introducti...
متن کاملProduct Systems of Graphs and the Toeplitz Algebras of Higher-rank Graphs
Abstract. There has recently been much interest in the C∗-algebras of directed graphs. Here we consider product systems E of directed graphs over semigroups and associated C∗-algebras C∗(E) and T C∗(E) which generalise the higher-rank graph algebras of Kumjian-Pask and their Toeplitz analogues. We study these algebras by constructing from E a product system X(E) of Hilbert bimodules, and applyi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015